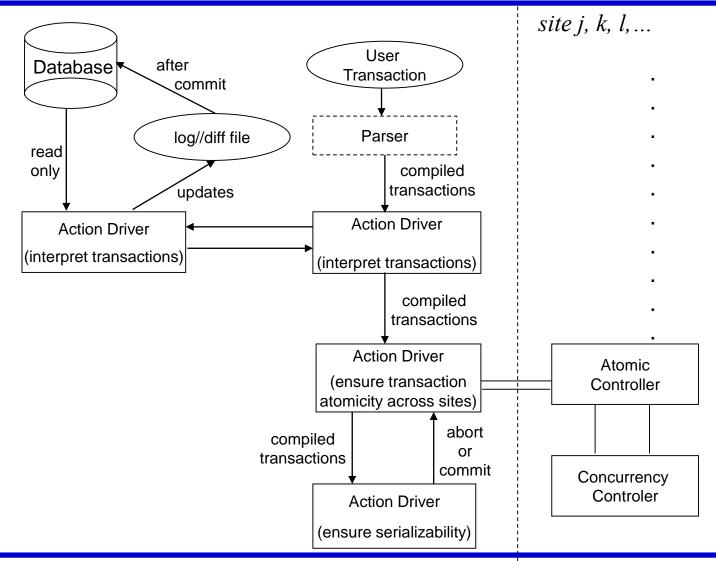
Outline

- Introduction
- Background
- Distributed DBMS Architecture
- Distributed Database Design
- Distributed Query Processing
- Distributed Transaction Management
- Building Distributed Database Systems (RAID)
- Mobile Database Systems
- Privacy, Trust, and Authentication
- Peer to Peer Systems

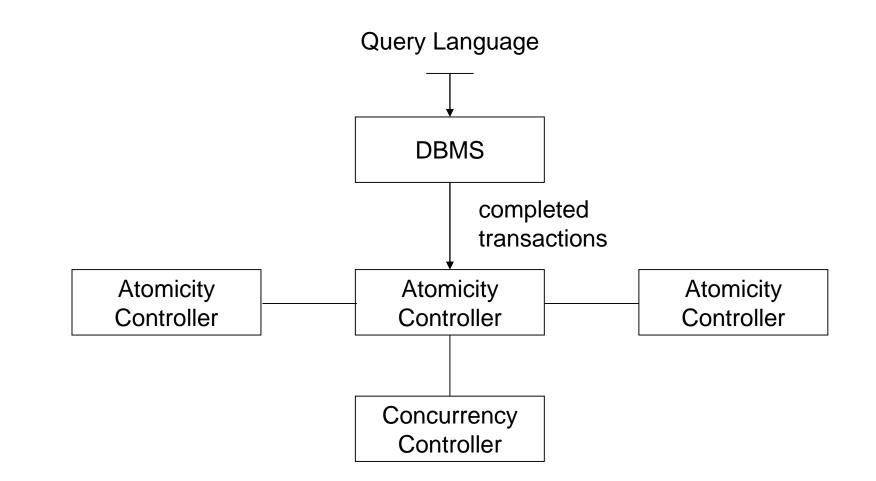
Useful References

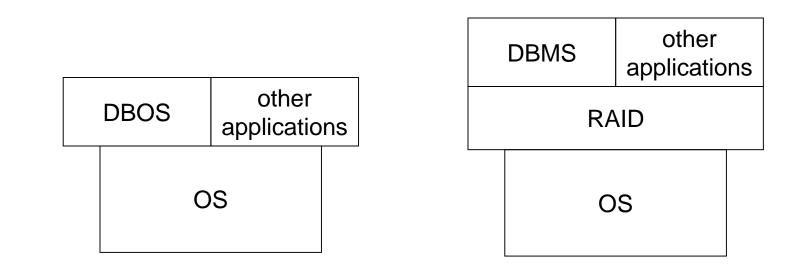

- B. Bhargava and John Riedl, *The Raid Distributed Database* System, IEEE Trans on Software Engineering, 15(6), June 1989.
- B. Bhargava and John Riedl, A Model for Adaptable Systems for Transaction Processing, IEEE Transactions on Knowledge and Data Engineering, 1(4), Dec 1989.
- **B**. Bhargava, *Building Distributed Database Systems*.
- Y. Zhang and B. Bhargava, WANCE: Wide area network communication emulation systems, IEEE workshop on Parallel and Distributed Systems, 1993.
- E. Mafla, and B. Bhargava, Communication Facilities for Distributed Transaction Processing Systems, IEEE Computer, 24(8), 1991.
- B. Bhargava, Y. Zhang, and E. Mafla, Evolution of a communication system for distributed transaction processing in RAID, Computing Systems, 4(3), 1991.

Implementations

- 1. LOCUS (UCLA)
- 2. TABS (Camelot) (CMU)
- 3. RAID (Purdue)
- 4. SDD-1 (Computer Corp. of America)
- 5. System R^* (IBM)
- 6. ARGUS (MIT)

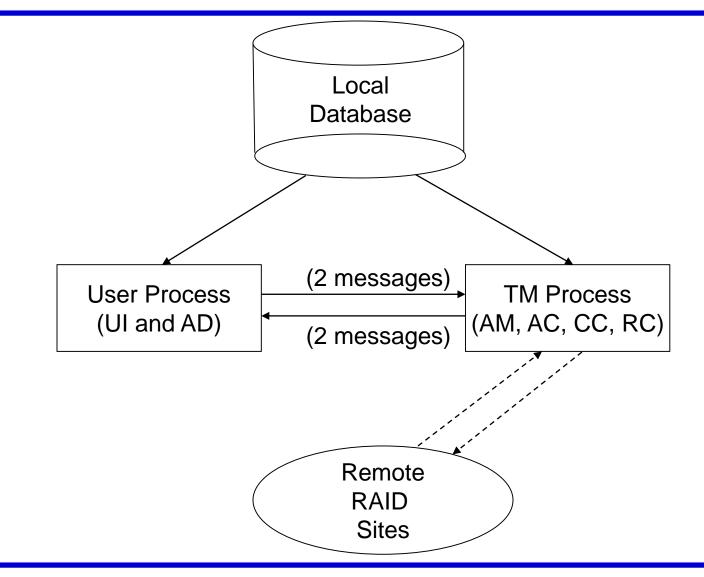
File system OS Data servers OS Database level (server) Transaction manager Data manager Database level Guardian (server)


Architecture of RAID System


Distributed DBMS

RAID Slides. 4

RAID Transactions


RAID Distributed System

RAID supports reliability

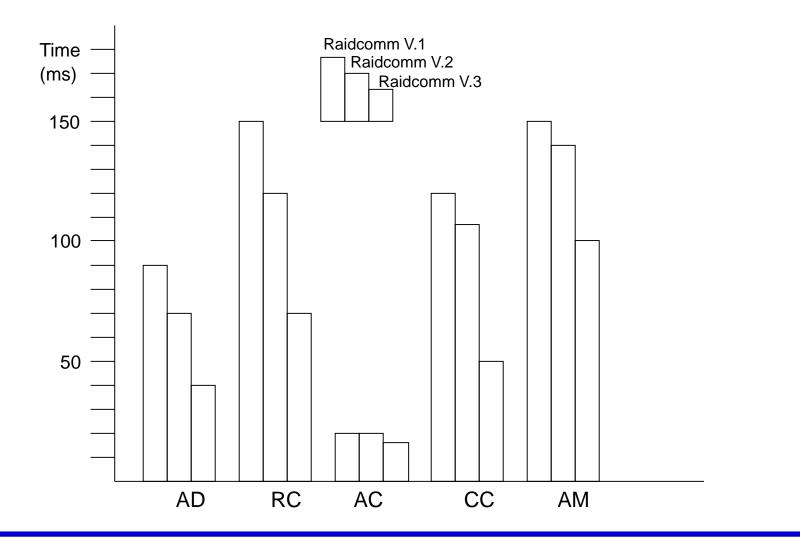
- transactions
- stable storage
- buffer pool management

Transaction Management in one Server

Distributed DBMS

CPU time used by RAID servers in executing transactions

Server CPU Time (second)					
Server	AC			CC	
Transaction	user	system	user	system	
Select one tuple	0.04	0.14	0.04	0.06	
select eleven tuples	0.04	0.08	0.02	0.02	
Insert twenty tuples	0.20	0.16	0.12	0.13	
Update one tuple	0.04	0.10	0.02	0.02	


Server	AD		AM	
Transaction	user	system	user	system
Select one tuple	0.34	0.90	0.00	0.00
select eleven tuples	0.54	1.48	0.00	0.00
Insert twenty tuples	1.23	3.10	0.14	0.71
Update one tuple	0.34	0.76	0.04	0.58

RAID Elapsed Time for Transactions in seconds

Transaction	1 site	$2 ext{ sites}$	3 sites	4 sites
Select one tuple	0.3	0.3	0.4	0.4
Select eleven tuples	0.4	0.4	0.4	0.4
Insert twenty tuples	0.6	0.6	0.8	0.8
Update one tuple	0.4	0.4	0.4	0.4

Performance Comparison of the Communication Libraries

Message	Length	Raidcomm V.1	Raidcomm V.2	Raidcomm V.3
$(\dagger multicast dest = 5)$	Bytes	μs	μs	μs
SendNull	44	2462	1113	683
MultiNull †	44	12180	1120	782
Send Timestamp	48	2510	1157	668
Send Relation Descriptor	76	2652	1407	752
Send Relation Descriptor †	72	12330	1410	849
Send Relation	156	3864	2665	919
Send Write Relation	160	3930	2718	1102

Distributed DBMS

Experiences with RAID Distributed Database

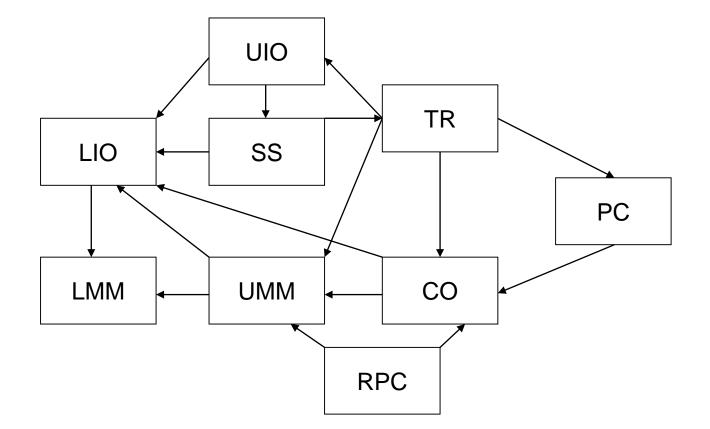
- □ Unix influences must be factored out.
- Communications software costs dominate everything else.
- Server based systems can provide modularity and efficiency.
- Concurrent execution in several server types is hard to achieve.
- □ Need very tuned system to conduct experiments.
- Data is not available from others for validation.
- Expensive research direction, but is respected and rewarded.

Layers

□ Transaction

- □ Transparent to errors
- □ RPC executed within transaction

Communication


- Datagram as basic unit
- □ RPC user level IPC (provides atomicity/reliability)
- Broadcast

Input/Output System

- Lower level I/O (reading and writing raw data)
- □ Stable storage (log, UNDO, REDO)
- □ Upper level I/O (reliable read/write)

Description of Symbols

- SS Stable storage: special I/O for log, backup info.
- LMM Low level memory management: simple physical memory services.
- UMM Upper level memory management: virtual memory, if desired; buffer pools.
- CO Communication: semi-reliable datagrams (at most once?); broadcast.
- LIO Low-level I/O: interface to hardware I/O.
- UIO Upper-level I/O: read/write protocol, permitting replication and providing location independence; includes logging.
- TR Transactions management: BeginTrans, EndTrans, and Abort verbs; provides concurrency control; must have 'hooks' in read/write system calls.
- RPC Remote procedure call support: reliable RPC.
- PC Partition control: provides virtual fail-proof network to upper layers (also handles site failure/recovery).

Dependency graph for proposed layered, distributed system

Distributed DBMS

The THOUSAND Relation

unique	two	ten	twenty	hundred	thousand
5	0	9	2	64	615
6	1	3	15	36	923
7	0	3	17	68	746
8	1	5	8	80	424
9	0	9	3	59	707
10	0	3	19	32	455
11	1	6	16	20	832
12	1	1	6	79	719
13	1	9	3	19	639
14	1	0	4	41	872
15	1	2	4	84	931

Some example tuples from the thousand relation

Single-Site RAID

Transaction	Interpret	Commit	Write
Select one tuple	2.1	0.4	0.0
Select eleven tuples	3.4	0.4	0.0
Insert twenty tuples	3.8	1.4	2.8
Update one tuple	1.9	0.5	1.5

Execution times in 1-site RAID (in seconds)

Two-Site RAID

Transaction	Interpret	Commit	Write
Select one tuple	1.9	0.4	0.0
Select eleven tuples	3.6	0.5	0.0
Insert twenty tuples	3.5	1.4	3.4
Update one tuple	1.8	0.5	1.6

Execution times in 2-site RAID (in seconds)

Three-Site RAID

Transaction	Interpret	Commit	Write
Select one tuple	2.0	0.4	0.0
Select eleven tuples	3.4	0.4	0.0
Insert twenty tuples	4.1	1.4	5.1
Update one tuple	1.7	0.4	2.2

Execution times in 3-site RAID (in seconds)

Four-Site RAID

Transaction	Interpret	Commit	Write
Select one tuple	2.2	0.4	0.0
Select eleven tuples	3.7	0.4	0.0
Insert twenty tuples	3.9	1.5	6.9
Update one tuple	1.8	0.4	2.7

Execution times in 4-site RAID (in seconds)